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Abstract

The Lo’s R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the
maximum likelihood estimation method implemented in S-Plus (S-MLE) are evaluated
through intensive Mote Carlo simulations for detecting the existence of long-memory.
It is shown that, it is difficult to find an appropriate lag q for Lo’s test for different AR5

and ARFIMA processes, which makes the use of Lo’s test very tricky. In general, the
GPH test outperforms the Lo’s test, but for cases where there is strong autocorrelations
(e.g., AR(1) processes with φ=0.97 or even 0.99), the GPH test is totally useless, even
for time series of large data size. Although S-MLE method does not provide a statistic
test for the existence of long-memory, the estimates of d given by S-MLE seems to10

give a good indication of whether or not the long-memory is present. Data size has a
significant impact on the power of all the three methods. Generally, the power of Lo’s
test and GPH test increases with the increase of data size, and the estimates of d with
GPH test and S-MLE converge with the increase of data size.

According to the results with the Lo’s R/S test (Lo, 1991), GPH test (Geweke and15

Porter-Hudak, 1983) and the S-MLE method, all daily flow series exhibit long-memory.
The intensity of long-memory in daily streamflow processes has only a very weak pos-
itive relationship with the scale of watershed.

1 Introduction

Long-memory, or long-range dependence, refers to a not negligible dependence be-20

tween distant observations in a time series. Long-memory processes can be ex-
pressed either in the time domain or in the frequency domain. In the time domain,
long-memory is characterized by a hyperbolically decaying autocorrelation function. In
fact, it decays so slowly that the autocorrelations are not summable. For a stationary
discrete long-memory time series process, its autocorrelation function ρ(k) at lag k25
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satisfies (Hosking, 1981)

ρ(k) ∼
Γ(1 − d )

Γ(d )
k2d−1, as k → ∞ , (1)

where, d is the long-memory parameter (or fractional differencing parameter), and
0<|d |<0.5.

Since the early work of Hurst (1951), it has been well recognized that many time5

series, in diverse fields of application, such as financial time series (e.g., Lo, 1991;
Meade and Maier, 2003), meteorological time series (e.g., Haslett and Raftery, 1989;
Bloomfield, 1992; Hussain and Elbergali, 1999) and internet traffic time series (see
Karagiannis et al., 2004), etc., may exhibit the phenomenon of long-memory. A number
of models have been proposed to describe the long-memory feature of time series.10

The Fractional Gaussian Noise model is the first model with long-range dependence
introduced by Mandelbrot and Wallis (1969). Then Hosking (1981) and Granger and
Joyeux (1980) proposed the fractional integrated autoregressive and moving average
model, denoted by ARFIMA (p, d , q). When −0.5<d<0.5, the ARFIMA (p, d , q)
process is stationary, and if 0<d<0.5 the process presents long-memory behaviour.15

In the hydrology community, many studies have been carried out on the test for
long-memory in hydrological processes. Montanari et al. (1997) applied fractionally
integrated autoregressive moving average (ARFIMA) model to the monthly and daily
inflows of Lake Maggiore, Italy. Rao and Bhattacharya (1999) explored some monthly
and annual hydrologic time series, including average monthly streamflow, maximum20

monthly streamflow, average monthly temperature and monthly precipitation, at vari-
ous stations in the mid-western United States. They stated that there is little evidence
of long-term memory in monthly hydrologic series, and for annual series the evidence
for lack of long-term memory is inconclusive. Montanari et al. (2000) introduced sea-
sonal ARFIMA model and applied it to the Nile River monthly flows at Aswan. The25

resulting model indicates that nonseasonal long-memory is not present in the data.
At approximately the same time, Ooms and Franses (2001) documented that monthly
river flow data displays long-memory, in addition to pronounced seasonality based on
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simple time series plots and periodic sample autocorrelations. Wang et al. (2005) in-
vestigated the existence of long-memory in two daily streamflow series of the Yellow
River in China, and found that both daily streamflow processes exhibit strong long-
memory.

This study seeks to evaluate several methods for detecting the presence of long-5

memory in time series and investigate the possible relationship between the intensity
of long-memory in daily streamflow processes and the watershed scales. In Sect. 2,
three methods used in the present study to detect long-memory will be briefly de-
scribed. Simulation results with the three methods are presented in Sect. 3. Then,
the three methods will be applied to 31 daily streamflow series to detect the existence10

of long-memory in Sect. 4, and some discussions are given in Sect. 5. Finally, some
conclusions are drawn in Sect. 6.

2 Methods of detecting the existence of long-memory

Many methods are available for detecting for the existence of long-memory and esti-
mating the fractional differencing parameter d . Many of them are well described in the15

monograph of Beran (1994). These techniques include graphical methods (e.g., clas-
sic R/S analysis; aggregated variance method etc.), parametric methods (e.g., Whit-
tle maximum likelihood estimation method) and semiparametric method (e.g., GPH
method and local whittle method). Graphical methods are useful to heuristically test if
there exists a long-range dependence in the data and to find a first estimate of d or20

H , but they are generally not accurate and are sensitive to short range serial correla-
tions. The parametric methods obtain consistent estimators of d or H via maximum
likelihood estimation of parametric long-memory models. They give more accurate es-
timate of d or H , but generally require knowledge of the true model which is in fact
always unknown. Semiparametric methods, such as the GPH method (Geweke and25

Porter-Hudak, 1983), seek to estimate d under few prior assumptions concerning the
spectral density of a time series and, in particular, without specifying a finite parameter
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model for the d -th difference of the time series. In the present study, two statistic tests:
Lo’s modified R/S test which is a modified version of classical R/S analysis, and GPH
test which is a semiparametric method will be used to test for the null hypothesis of
no presence of long-memory. Besides, an approximate maximum likelihood estimation
method is used to estimate the fractional differencing parameter d , but without testing5

for the significance level of the estimate.

2.1 Lo’s Modified R/S test

In classical R/S analysis, for a given time series {xt}, t=1, 2, . . . , N, with the j -th partial
sum Yj=

∑j
i=1 xi , j=1, 2, . . . , N, and the sample variance S2

j =j
−1 ∑j

i=1 (xi−j
−1Yj )

2,
j=1, 2, . . . , N, the rescaled adjusted range statistic or R/S-statistic is defined by10

R/S(j ) =
1
Sj

[
max
0≤t≤j

(
Yt −

t
j
Yj

)
− min

0≤t≤j

(
Yt −

t
j
Yj

)]
, j = 1, 2, ..., N (2)

The classical R/S analysis is sensitive to the presence of explicit short-range depen-
dence structures, and lacks of a distribution theory for the underlying statistic. To over-
come these shortcomings, Lo (1991) proposed a modified R/S statistic that is obtained
by replacing the denominator Sj in Eq. (2), i.e., the sample standard deviation, by a15

modified standard deviation Sq which takes into account the autocovariances of the
first q lags, so as to discount the influence of the short-range dependence structure
that might be present in the data. Instead of considering multiple lags as in Eq. (1),
only focus on lag j=N. The Sq is defined as

Sq =

 1
N

N∑
j=1

(xj − x̄N )2 +
2
N

q∑
j=1

ωj (q)

 N∑
i=j+1

(xi − x̄N )(xi−j − x̄N )

1/2

(3)
20
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where x̄N denotes the sample mean of the time series, and the weights ωj (q) are given
by wj ( q)=1–j /(q+1), q<N. Then the Lo’s modified R/S statistic is defined by

QN,q =
1
Sq

 max
0≤i≤N

i∑
j=1

(xj − x̄N ) − min
0≤i≤N

i∑
j=1

(xj − x̄N )

 (4)

If a series has no long-range dependence, Lo (1991) showed that given the right choice

of q, the distribution of N−1/2QN,q is asymptotic to that of5

W = max
0≤r≤1

V (r) − min
0≤t≤1

V (r),

where V is a standard Brownian bridge, that is, V (r)=B(r)–rB(1), where B denotes
standard Brownian motion. Since the distribution of the random variable W is known
as

P (W ≤ x) = 1 + 2
∞∑
j=1

(1 − 4x2j2)e−2x2j2
, (5)

10

Lo gave the critical values of x for hypothesis testing at sixteen significance levels
using Eq. (4), which can be used for testing the null hypothesis H0 that there is only
short-term memory in a time series at a significance level α.

2.2 GPH Test

Geweke and Porter-Hudak (1983) proposed a semi-parametric approach to testing for15

long-memory. Given a fractionally integrated process {xt}, its spectral density is given
by:

f (ω) =
[
2 sin(ω/2)

]−2d fu(ω)

where ω is the Fourier frequency, fu(ω) is the spectral density corresponding to ut,
and ut is a stationary short memory disturbance with zero mean. Consider the set of20
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harmonic frequencies ω j=(2πj /n), j=0, 1, . . . , n/2, where n is the sample size. By
taking the logarithm of the spectral density f (ω) we have

ln f (ωj ) = ln fu(ωj ) − d ln
[
4 sin2 (ωj

/
2
)]

which may be written in the alternative form

ln f (ωj ) = ln fu(0) − d ln
[
4 sin2(ωj/2)

]
+ ln

[
fu(ωj )

/
fu(0)

]
(6)5

The fractional difference parameter d can be estimated by the regression equations
constructed from Eq. (5). Geweke and Porter-Hudak (1983) showed that using a peri-
odogram estimate of f (ωj ), if the number of frequencies used in the regression Eq. (6)
is a function g(n) (a positive integer) of the sample size n where g(n)=nα with 0<α<1,
the least squares estimate d̂ using the above regression is asymptotically normally10

distributed in large samples:

d̂ ∼ N(d,
π2

6
∑g(n)

j=1 (Uj − U)2
)

where Uj= ln[4 sin2(ωj
/

2)] and U is the sample mean of Uj , j=1, · · · , g(n). Under the
null hypothesis of no long-memory (d=0), the t-statistic

td=0 = d̂ ·

 π2

6
∑g(n)

j=1 (Uj − U)2

−1/2

15

has a limiting standard normal distribution.

2.3 Maximum likelihood estimation of fractional differencing parameter d

Suppose that the observation X=(x1, . . . , xn)t is an ARFIMA (p, d, q) process defined
by

φ(B)(1 − B)d (xt − µ) = θ(B)εt (7)20
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where B is the backshift operator, that is, Bx t=xt−1; φ (B)=1–φ1B–. . . –φpB
P and

θ(B)=1–θ1B–. . . –θqB
q represent the ordinary autoregressive and moving average

components; εt is a white noise process with zero mean and variance σ2.
The Gaussian log-likelihood of X for the process (7) is given by

logL(µ, η, σ2) = −n
2

log(2π) − 1
2

log |Σ| − 1
2
X tΣ−1X (8)5

where η=(φ1,. . . , φp; d ; θ1,. . . , θq) is the parameter vector; Σ denotes the n×n co-

variance matrix of X depending on η and σ2, |Σ| denote the determinant of Σ. The
maximum likelihood estimators η̂ and σ̂2 can be found by maximizing logL(η, σ2) with
respect to η and σ2.

In this study, the maximum likelihood estimation method implemented in S-Plus ver-10

sion 6 (referred to as S-MLE) is used to estimate the fractional differencing parameter
d . S-MLE is implemented based on the approximate Gaussian maximum likelihood
algorithm of Haslett and Raftery (1989). If the estimated d is significantly greater than
zero, we consider it an evidence of the presence of long-memory.

3 Monte Carlo simulations15

We perform an extensive Monte Carlo investigation in order to find out how reliable
the Lo’s test, the GPH test and the S-MLE are with AR and ARFIMA processes. We
consider five AR(1) and six ARFIMA(1, d ,0) processes. All AR(1) models are of the
form (1–φB)xt=εt, and all ARFIMA(1, d ,0) of form (1–B)d (1–φB)xt=εt, where {εt}
are i.i.d standard normal, and B is the backshift operator. For the AR models, large20

autoregressive coefficients, i.e., φ=0.5, 0.8, 0.9, 0.95, 0.99 are considered, because
these are the cases commonly seen in streamflow processes. For the ARFIMA models,
φ=0, 0.5, 0.9 and d=0.3, 0.45. We generate 500 simulated realizations of size 500,
1000, 3000, 10 000 and 20 000, respectively, for each model. The AR series and the
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ARFIMA series are produced by the arima.sim and arima.fracdiff.sim function built in
S-Plus version 6.

For Lo’s modified R/S test, the right choice of q in Lo’s method is essential. It must
be chosen with some consideration of the data at hand. Some simulation studies (Lo,
1991; Teverovsky et al., 1999) have shown that the probability of accepting the null5

hypothesis varied significantly with q. In general, the larger the q, the less likely is the
null hypothesis to be rejected. One appealing data-driven formula (Andrew, 1991) for
choosing q based on the assumption that the true model is an AR(1) model is given by

q =

[(
3n
2

)1/3 ( 2ρ̂

1 − ρ̂2

)2/3
]

where [•] denotes the greatest integer function, n is the length of the data, ρ̂ is the esti-10

mated first-order autocorrelation coefficient. However, our simulation for AR processes
and ARFIMA processes with different intensity of dependence indicates that this data-
driven formula is too conservative in rejecting the null hypothesis of no long-memory,
especially for cases where autocorrelations at lag 1 are high. After a trial-and-error
procedure, we use the following modified formula to choose the lag q:15

q =

[( n
10

)1/4
(

2ρ̂

1 − ρ̂2

)2/3
]
. (9)

where ρ̂ is the autocorrelation at lag 1, i.e., ACF(1). This modified formula is a trade-off
between lowering the probability of wrongly rejecting the null hypothesis of no long-
memory for AR processes, and reserving the power of correctly rejecting the null hy-
pothesis for ARFIMA processes. The null hypothesis of no long-memory is rejected at20

a 5% significance level if QN,q is not contained in the interval [0.809, 1.862] (Lo, 1991).
Similarly to the case with Lo’s test, for the GPH test, there is a choice of the number

of frequencies g(n) used in the regression Eq. (6). This choice entails a bias-variance
tradeoff. For a given sample size, as g(n) is increased from 1, the variance of the d esti-
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mate decreases, but this decrease is typically offset by the increase in bias due to non-
constancy of fu(ω). Geweke and Porter-Hudak (1983) found that choosing g(n)=n0.5

gave good results in simulation. We adopt such a criterion in our Monte Carlo simula-
tion study. The periodogram used for calculating GPH test statistic is smoothed with a
modified Daniell smoother of length 5. The null hypothesis of no long-memory (d=0)5

is rejected at a 5% significance level if the t-statistic is not contained in the interval
[−1.960, 1.960].

When estimating the parameter d with S-MLE method, we assume that the order
p of the AR component for each simulated ARFIMA process is unknown before hand.
Instead, we estimate the order p of AR component by using the AIC criterion (Akaike,10

1973).
The results of detecting long-memory in simulated AR and ARFIMA processes of

sizes ranging from 500 to 20 000 with Lo’s test, GPH test and the S-MLE estimates of
d are reported in Table 1. For Lo’s test, we list the average values of the lags chosen
with the data-driven Eq. (9) (denoted as “average lag”), the standard deviations of15

the lags (“SD of lag”), and the number of acceptance of the null hypothesis for 500
simulations. For GPH test, we list the average values of the estimates of d (“average
d ”), the standard deviations of the estimates (“SD of d ”), and the number of acceptance
of the null hypothesis for 500 simulations. For the S-MLE method, the averages and
standard deviations of the estimates of d (“average d ” and “SD of d ”) are reported.20

According to the results with simulated AR and ARFIMA processes, shown in Table 1,
we have the following findings:

1. For AR(1) processes, when the autocorrelation is less than 0.9, both the Lo’s
R/S test and the GPH test work well, and the GPH test has a better perfor-
mance. But when the autoregressive coefficient is higher than 0.9, the probability25

of committing Type I error with the GPH test increase very fast, and the GPH test
gets useless for the cases when φ is above 0.97 (for saving space, the results
with φ=0.97 are not presented in Table 1), even for the size of 20 000 points. In
contrast, the probability of committing Type I error with the Lo’s R/S test is still
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considerably low even for AR processes with a φ of as high as 0.99.

2. For ARFIMA(1,d ,0) processes, the GPH technique yields downwardly biased esti-
mates of d when an AR term of low autoregressive coefficient value (e.g., φ≤0.5)
is present, whereas yields upwardly biased estimates of d when an AR term of
high autoregressive coefficient value (e.g., φ=0.9) is present. This seems to be5

not in agreement with the results of Sowell (1992), who showed that, when the
sample length is small, the GPH technique yields upwardly biased estimates of
d when AR and MA terms are present. On the other hand, the power of GPH
test increases with the increase of data size, the intensity of long-memory, and
autocorrelations of their AR components. For cases where the data size is over10

10 000, the probability of committing Type II error, i.e., false acceptance of the null
hypothesis of no long-memory, by GPH test is close to zero. In contrast, the Lo’s
test only performs slightly better than the GPH test when the intensity of long-
memory is not strong and the value of φ in the AR component is low, but for the
cases of strong intensity of long-memory and with an AR component of strong15

autocorrelation, the Lo’s test performs far less powerful than the GPH test.

3. It seems difficult to choose an appropriate lag for Lo’s test that is valid for all cases.
For the cases where the data sizes are less than 3000, while the lag chosen by
Eq. (9) seems to be already very large and cannot get larger so as to avoid the
high probability of wrongly rejecting the null hypothesis of no long-memory for AR20

processes, the lag seems to be not large enough to avoid the high probability of
wrong acceptance of the null hypothesis for ARFIMA processes. The good news
is that the lag chosen by Eq. (9) works well when the data size is over 104, es-
pecially when the value of φ in the AR component is low (e.g., φ≤0.5). But for
AR(1) processes with high autoregressive coefficients and ARFIMA(1,d ,0) pro-25

cesses with high value of φ in their AR components, the lag chosen by Eq. (9)
seems too short for AR series of big size, but not large enough for ARFIMA pro-
cesses. Namely, no good tradeoff can be achieved in choosing an appropriate
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lag value for the Lo’s test. This result further substantiate the limitation of the use
of the Lo’s test, which has been shown in the previous study of Teverovsky et
al. (1999).

4. Although S-MLE method does not provide a statistic test for the existence of long-
memory, the estimates of d seems to give a good indication of whether or not the5

long-memory is present. It is shown by our simulation study that:

a) For AR(1) processes, S-MLE gives basically correct estimates of d , i.e., d=0,
even when the autoregressive coefficients are very high, although the esti-
mates are slightly positively biased when the data size is small (e.g., 500
points). The estimates get more accurate (according to the averages) and10

more stable (according to the standard deviations) with the increase of sam-
ple size.

b) For ARFIMA processes, S-MLE provides significantly downwardly biased es-
timates when the data size is small (e.g., less than 103). The values of the
estimates of d given by S-MLE increase with increasing sample size and are15

basically correct when the data size is close to 104. But the estimates of
d get upwardly biased when the data size is too big (say, >104). This is in
contradiction with the result of Kendziorski (1999), who showed that S-MLE
provided unbiased estimates of d for ARFIMA(0,d ,0) processes of length 211

(2048) or greater.20

5. Data size has a significant impact on the power of all the three methods. Gener-
ally, the power of Lo’s test and GPH test increases with the increase of data size,
and the estimates of d with GPH test and S-MLE converge with the increase of
data size. Agiakloglou et al. (1993) found that GPH estimators performed poorly
for AR(1) processes with φ=0.9 for sample size of 100 to 900. The simulation25

results of Hurvich and Beltrao (1993) also showed the poor performance of the
GPH estimator when φ=0.9 for not only AR(1) processes but also ARFIMA(1,d ,0)
processes. In our simulation study, it is shown that, on one hand, the power of
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GPH test does decrease with the increase of the autoregressive coefficient; on
the other hand, the power of GPH test increases with the increase of sample size.
If we use a sample size of larger than 104 points, GPH test still has very good
performance for AR(1) processes with φ=0.9. But the use of GPH test is helpless
when φ is larger than 0.95, even with a data size of larger than 104. One possi-5

ble solution could be to choose the number of frequencies used in the regression
Eq. (6) more carefully (Giraitis et al., 1997; Hurvich and Deo, 1999). But the effec-
tiveness of these methods seems to be limited. For example, when Hurvich and
Deo (1999) proposed the plug-in method to choose the number of frequencies
g(n) in the GPH test, they also showed that as φ increases, the estimates of d10

using the number of frequencies g(n) selected by the plug-in method are much

more positively biased than simply using g(n)=n1/2.

On the basis of the above findings, to obtain reliable test results on detecting the pres-
ence of long-memory, we have two suggestions: Firstly, as we see that the power of
Lo’s test and GPH test increases with the increase of data size, and the estimates15

of d with the GPH-test and S-MLE converge as the sample size increase, therefore,
use test data of enough data size (e.g., 3000∼104) when detecting the existence of
long-memory. Secondly, the estimate of d given by the S-MLE is recommended to be
used as and indicator of the intensity of long-memory, but notice that the estimate with
S-MLE would be biased downwardly significantly when the data size is less than 300020

and biased upwardly when the data size is above 104. Therefore, the most appropriate
date size for estimating d with S-MLE is slightly less than 104. Thirdly, use the methods
in combination with each other for detecting the existence of long-memory. Here we
consider the combined use of Lo’s test, GPH-test and S-MLE. As shown in Table 1, the
combined use of these three methods produces the following alternatives:25

a) Failure to reject by both the Lo’s test and the GPH-test, and low values of esti-
mated d (e.g., <0.1) with S-MLE, provide evidence in favour of no existence of
long-memory
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b) Rejection by both Lo’s test and GPH test, and high values of estimated d (e.g.,
>0.2) with S-MLE, support that the series is a long-memory process

c) In other cases, the data are not sufficiently informative with respect to the long-
memory properties of the series. But if both the GPH test and S-MLE give positive
result in detecting the existence of long-memory, then we may consider the long-5

memory is present whatever the result given by the Lo’s test, and vice versa.

4 Results with daily streamflow data

4.1 Daily streamflow data used

Daily average discharge series recorded at 31 gauging stations in eight basins in
Europe, Canada and USA are analyzed in the present study. The data come10

from Global Runoff Data Centre (GRDC) (http://grdc.bafg.de), U.S. Geological Sur-
vey Water Watch (http://water.usgs.gov/waterwatch), and Water Survey of Canada
(http://www.wsc.ec.gc.ca). We generally have the following three rules to select sta-
tions in each basin:

1. The selection of basins covers different geographical and climatic regions;15

2. The drainage area of each station is basically within 5 different watershed scales,
namely, >106 km2; 106∼105 km2; 105∼104 km2; 104∼103 km2; <103 km2;

3. The stations are located in the main river channel of the river if possible. When
stations at the main channel are not available, stations at major tributaries are
used.20

For each station, we select a segment of historical daily streamflow records of mostly
30 years long. However, because of data limitation, the shortest series covers a period
of only 14 years. The segments are chosen with following criteria:

1616

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1603/2006/hessd-3-1603-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1603/2006/hessd-3-1603-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html
http://grdc.bafg.de
http://water.usgs.gov/waterwatch
http://www.wsc.ec.gc.ca


HESSD
3, 1603–1627, 2006

Detecting
long-memory

W. Wang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1. The series should be approximately stationary, as least by visual inspection. We
have stationarity as our primary data criterion because, when certain types of
nonstationarity are present, many longmemory parameter estimators may fail
(Klemes, 1974).

2. The data should be recorded as early as possible, so as to limit the influence of5

human intervention to the minimum.

3. The temporal spans of streamflow series at different locations in one basin should
be as close as possible, so as to avoid possible impacts of regional low-frequency
climatic variations.

The description of selected stations and their corresponding daily streamflow series is10

listed in Table 2.

4.2 Results

The Lo’s modified R/S test and the GPH test are carried out with S+FinMetrics module
of statistical analysis package S-plus (Zivot and Wang, 2003). To alleviate the impact
of seasonality, all the series are deseasonalized by subtracting the daily means and15

dividing by the daily standard deviations.
For Lo’s modified R/S test, both a fixed lag (i.e., 50) and a lag determined by the data-

driven formula (Eq. 9) are used. For GPH test, we choose g(n)=n0.5 as suggested
by Geweke and Porter-Hudak (1983). When using S-MLE to estimate the fractional
differencing parameter d , the order p of the AR component in ARFIMA (p, d, q) model20

is determined by the AIC criteria (Akaike, 1973). The results of detecting long-memory
in daily streamflow processes are reported in Table 3, which show the following:

1. The GPH estimates and the S-MLE estimates are in good agreement, as shown
in Fig. 1, except for four series for which the estimates of d given by S-MLE are
zero. According to such a consistency, we believe that the estimates of zero given25

by S-MLE probably are resulted from its erroneousness. Therefore, when using
1617
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S-MLE method to estimate the fractional differencing parameter d , caution must
be taken if an estimate of zero is given by S-MLE. At the same time, we notice
that the estimates given by GPH test are generally slightly larger than those given
by the S-MLE method for cases where the estimates of d are greater than 0.4.

2. Teverovsky et al. (1999) pointed out that, picking a single value of q with Lo’s5

test to determine whether or not to reject the null hypothesis of no long-range
dependence in a given data set is highly problematic. In consequence, they rec-
ommended that one always relies on a wide range of different q-values, and does
not use Lo’s method in isolation, instead, uses it always in conjunction with other
graphical and statistical techniques for checking for long-memory, especially when10

Lo’s method results in accepting the null hypothesis of no long-range dependence.
While we agree that we should not use Lo’s method in isolation, it is doubtful that
using a wide range of different q-values may improve the test reliability. With a
wide range of q-values, we are still not sure which one gives the right answer,
as shown here in the cases for detecting long-memory in daily streamflow series.15

In addition, the results given by Lo’s test are not in agreement with those of the
GPH test and S-MLE method with respect to the intensity of long-memory. For
example, with either the data-driven value of lag q or the fixed value of lag q, the
Lo’s test indicates that the daily streamflow of the Rhine River at Lobith is a short-
memory process, whereas both the GPH test and the S-MLE method indicate that20

the streamflow process of the Rhine River at Lobith exhibits long-memory.

3. The Lo’s test indicates that about 1/3 (11 according to the data-driven lag, and
9 according to the fixed lag) of all the 31 streamflow series do not exhibit long-
memory property, whereas the estimates of S-MLE show that 4 out of all the
series have d ’s of zero value. But the results of Lo’s test and S-MLE are not25

in agreement (except for one case of Color-4), namely, those series with zero
estimated d given by S-MLE seem to exhibit significant long-memory according
to Lo’s test (with either data-driven lag or fixed lag). On the other hand, GPH test
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tells us that all the series exhibit long-memory. Therefore, for each series, at least
two methods applied here give evidences of the existence of long-memory in all
the daily streamflow processes (except for one case of Color-4). Because of the
unreliability of the Lo’s test, and possible erroneousness of the S-MLE estimates,
we conclude that all the streamflow series have long-memory.5

4. The intensity of long-memory, denoted by the estimates of d given by S-MLE (the
zeros are removed), has little relationship with the watershed scale, as shown in
Fig. 2. Only a very weak positive relationship can be established between the in-
tensity of long-memory and the watershed scale, that is, the larger the watershed
scale, the stronger the intensity of the long-memory.10

5 Conclusions

The Lo’s R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the
maximum likelihood estimation method implemented in S-Plus (S-MLE) are evaluated
through intensive Mote Carlo simulations for detecting the existence of long-memory.
It is shown that, it is difficult to find an appropriate lag q for Lo’s test for different AR15

and ARFIMA processes, which makes the use of Lo’s test very tricky. In general, the
GPH test outperforms the Lo’s test, but for cases where there is strong autocorrelations
(e.g., AR(1) processes with φ=0.97 or even 0.99), the GPH test is totally useless, even
for time series of large data size. Although S-MLE method does not provide a statistic
test for the existence of long-memory, the estimates of d given by S-MLE seems to20

give a good indication of whether or not the long-memory is present. Data size has a
significant impact on the power of all the three methods. Generally, the power of Lo’s
test and GPH test increases with the increase of data size, and the estimates of d with
GPH test and S-MLE converge with the increase of data size.

Although the S-MLE method perform very well for simulated AR(1) and25

ARFIMA(1, d, 0) processes, when applying the S-MLE method to the observed stream-
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flow series, it is found that it may wrongly give zero estimates of d for several series
even for large data size (e.g., around 104). Therefore, caution must be taken in case
the S-MLE gives a zero estimate of d .

According to results with the Lo’s R/S tests (Lo, 1991), GPH test (Geweke and Porter-
Hudak, 1983) and the S-MLE method, all daily flow series exhibit long-memory. The5

intensity of long-memory in daily streamflow processes has only a very weak positive
relationship with the scale of the watershed, that is, the larger the watershed scale, the
stronger the intensity of the long-memory.
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Table 1. Long-memory test results for simulated AR and ARFIMA series.

Model Data size
Lo’s R/S test GPH test S-MLE

average lag SD of lag accepted average d SD of d accepted average d SD of d

AR(1) 500 2.8 0.5 464 −0.0167 0.1302 495 0.0149 0.0350
ar=.5 1000 3.2 0.4 454 −0.0123 0.1141 490 0.0189 0.0325

3000 4.6 0.5 468 −0.0124 0.0772 490 0.0136 0.0220
10 000 6.1 0.2 455 −0.0119 0.0607 490 0.0093 0.0132
20 000 7.8 0.4 469 −0.0078 0.0479 488 0.0057 0.0100

AR(1) 500 6.7 0.8 428 0.1220 0.1388 470 0.0269 0.0669
ar=.8 1000 8.0 0.7 442 0.0637 0.1110 489 0.0209 0.0419

3000 10.8 0.5 441 0.0163 0.0827 490 0.0199 0.0322
10 000 14.7 0.5 441 −0.0016 0.0605 490 0.0114 0.0207
20 000 17.6 0.5 454 −0.0036 0.0511 483 0.0079 0.0149

AR(1) 500 11.3 1.6 431 0.3252 0.1342 268 0.0290 0.0566
ar=.9 1000 13.5 1.4 408 0.2189 0.1135 326 0.0296 0.0632

3000 18.1 1.1 414 0.0957 0.0851 436 0.0240 0.0488
10 000 24.6 0.8 441 0.0273 0.0600 483 0.0132 0.0236
20 000 29.4 0.7 457 0.0107 0.0500 489 0.0081 0.0150

AR(1) 500 18.7 3.6 451 0.5739 0.1395 24 0.0302 0.0497
ar=.95 1000 22.4 3.1 429 0.4488 0.1154 34 0.0390 0.0801

3000 29.6 2.4 426 0.2594 0.0800 91 0.0270 0.0535
10 000 40.3 1.8 416 0.1201 0.0601 300 0.0117 0.0284
20 000 47.9 1.6 416 0.0665 0.0475 409 0.0065 0.0160

AR(1) 500 52.9 20.3 494 0.9122 0.1617 0 0.0482 0.0674
ar=.99 1000 65.3 19.3 484 0.8530 0.1226 0 0.0431 0.0780

3000 86.8 14.7 399 0.7297 0.0826 0 0.0231 0.0442
10 000 119.7 11.9 389 0.5555 0.0583 0 0.0093 0.0211
20 000 142.4 9.5 380 0.4478 0.0477 0 0.0068 0.0148

ARFIMA 500 2.2 0.5 129 0.2587 0.1360 353 0.2144 0.1100
d=0.3 1000 2.8 0.5 61 0.2749 0.1157 228 0.2571 0.0829

3000 3.8 0.5 15 0.2821 0.0826 68 0.2786 0.0646
10 000 5.2 0.4 0 0.2884 0.0572 2 0.3043 0.0201
20 000 6.3 0.5 0 0.2900 0.0470 0 0.3072 0.0162

ARFIMA 500 7.1 1.4 255 0.2729 0.1402 333 0.1728 0.1346
ar=0.5 1000 8.6 1.3 139 0.2783 0.1130 233 0.2126 0.1165
d=0.3 3000 11.4 1.2 63 0.2878 0.0919 83 0.2849 0.0675

10 000 15.6 1.0 8 0.2934 0.0604 4 0.3049 0.0363
20 000 18.6 0.9 5 0.2955 0.0493 0 0.3102 0.0202

ARFIMA 500 41.1 12.2 493 0.6375 0.1513 16 0.1683 0.1451
ar=0.9 1000 49.4 11.6 478 0.5213 0.1123 6 0.2035 0.1333
d=0.3 3000 65.4 11.2 345 0.3964 0.0881 5 0.2397 0.1243

10 000 89.4 9.2 155 0.3316 0.0627 2 0.3103 0.0678
20 000 106.6 8.3 78 0.3145 0.0512 0 0.3281 0.0501

ARFIMA 500 7.0 4.0 130 0.4077 0.1506 157 0.3092 0.1572
d=0.45 1000 8.5 4.4 56 0.4274 0.1237 53 0.3616 0.1309

3000 11.2 5.2 11 0.4371 0.0873 0 0.4238 0.0620
10 000 15.4 6.0 0 0.4373 0.0613 0 0.4589 0.0173
20 000 18.6 7.0 0 0.4371 0.0489 0 0.4676 0.0164

ARFIMA 500 19.1 10.1 346 0.4331 0.1515 133 0.2355 0.1628
ar=0.5 1000 22.9 10.6 204 0.4385 0.1164 33 0.3328 0.1311
d=0.45 3000 31.0 12.2 66 0.4404 0.0893 3 0.4226 0.0668

10 000 42.4 14.6 11 0.4429 0.0635 0 0.4608 0.0228
20 000 50.2 16.2 4 0.4459 0.0507 0 0.4718 0.0170

ARFIMA 500 135.0 78.5 493 0.7956 0.1394 2 0.1306 0.1757
ar=0.9 1000 163.4 90.2 495 0.6733 0.1172 1 0.1712 0.1828
d=0.45 3000 222.9 116.2 472 0.5539 0.0878 0 0.3128 0.1665

10 000 299.5 138.7 273 0.4856 0.0599 0 0.4464 0.0577
20 000 361.8 158.0 140 0.4666 0.0491 0 0.4748 0.0226

Note: The results of the Lo’s R/S test and the GPH test are based on 500 replications. The
results of the S-MLE estimate of d are based on 100 replications.
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Table 2. Description of selected daily streamflow time series.

No. Basin Location of gauging stations Area Latitude Longitude Elevation Period Avg. discharge
(km2) (m) (cms)

Color-1 Colorado Colorado River At Lees Ferry 289 400 36.865 −111.588 946.8 1922–1951 489.1
Color-2 Colorado River Near Cisco 62 390 38.811 −109.293 1246.6 1923–1952 222.3
Color-3 Colorado River Near Kremmling 6167 40.037 −106.439 2231.1 1904–1918 52.3
Color-4 Williams Fork Near Parshall 476 40.000 −106.179 2380.2 1904–1924 4.9
Colum-1 Columbia Columbia River At The Dalles 613 565 45.108 −121.006 0.0 1880–1909 6065.7
Colum-2 Columbia River at Trail 88 100 49.094 −117.698 – 1914–1936 2029.4
Colum-3 Columbia River at Nicholson 6660 51.244 −116.912 – 1933–1962 107.5
Colum-4 Columbia River Near Fairmont

Hot Springs
891 50.324 −115.863 – 1946–1975 11.1

Danu-1 Danube Danube river at Orsova 576232. 44.700 22.420 44 1901–1930 5711.9
Danu-2 Danube river at Achleiten 76653. 48.582 13.504 288 1901–1930 1427.0
Danu-3 Inn river at Martinsbruck 1945. 46.890 10.470 – 1904–1933 57.8
Fras-1 Fraser Fraser River at Hope 217 000 49.381 −121.451 – 1913–1942 2648.8
Fras-2 Fraser River at Shelley 32 400 54.011 −122.617 – 1950–1979 825.3
Fras-3 Fraser River at Mcbride 6890 53.286 −120.113 – 1959–1988 197.3
Fras-4 Canoe River below Kimmel

Creek
298 52.728 −119.408 – 1972–1994 14.5

Missi-1 Mississippi Mississippi River At Vicksburg 2 962 974 32.315 −90.906 14.1 1932–1961 16 003.1
Missi-2 Mississippi River at Clinton 221 608 41.781 −90.252 171.5 1874–1903 1477.3
Missi-3 Minnesota River At Mankato 38 574 44.169 −94.000 228.0 1943–1972 94.9
Missi-4 Minnesota River At Ortonville 3003 45.296 −96.444 291.5 1943–1972 3.4
Misso-1 Missouri Missouri River at Hermann 1 353 000 38.710 −91.439 146.8 1929–1958 2162.0
Misso-2 Missouri River at Bismarck, 482 776 46.814 −100.821 493.0 1929–1953 604.6
Misso-3 Missouri River at Fort Benton 64 070 47.818 −110.666 796.8 1891–1920 219.7
Misso-4 Madison River near McAllister 5659 45.490 −111.633 1429.2 1943–1972 50.5
Ohio-1 Ohio Ohio River At Metropolis 525 500 37.148 −88.741 84.2 1943–1972 7567.5
Ohio-2 Ohio River at Sewickley 50 480 40.549 −80.206 207.3 1943–1972 922.4
Ohio-3 Tygart Valley River At Colfax 3529 39.435 −80.133 261.0 1940–1969 72.4
Ohio-4 Tygart Valley River Near Dailey 479 38.809 −79.882 591.3 1940–1969 9.2
Rhine-1 Rhine Rhine at Lobith 160 800 51.840 6.110 8.5 1911–1940 2217.8
Rhine-2 Rhine at Rheinfelden 34 550 47.561 7.799 259.6 1931–1960 1017.3
Rhine-3 Rhine at Domat/Ems 3229 46.840 9.460 562.0 1911–1940 126.9
Rhine-4 Emme River at Emmenmatt 443 46.960 7.740 – 1915–1944 12.0
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Table 3. Results of long-memory detection for daily streamflow series.

No. data size
Lo’s R/S test GPH test S-MLE

ACF(1) Lag-1 Stat-1 Lag-2 Stat-2 d Stat d

Color-1 10 957 0.9738 64 2.9566 50 3.2475 0.5125 7.5412 0.4478
Color-2 10 958 0.9627 50 3.4320 50 3.4320 0.4906 7.2192 0.4506
Color-3 5113 0.9431 31 2.1437 50 1.8067 0.4766 5.6613 0.4863
Color-4 7305 0.9549 40 1.1811 50 1.0826 0.4043 5.3169 0.0000
Colum-1 10 957 0.9910 132 1.5357 50 2.1519 0.5071 7.4617 0.4615
Colum-2 8401 0.9966 238 1.1342 50 1.8357 0.4673 6.3838 0.4187
Colum-3 10 957 0.9778 72 3.1202 50 3.5159 0.3466 5.101 0.4392
Colum-4 10 957 0.9676 55 1.8590 50 1.9213 0.3642 5.36 0.4213
Danu-1 10 957 0.9931 158 1.5328 50 2.0899 0.3441 5.0639 0.2634
Danu-2 10 957 0.9577 46 1.9412 50 1.8957 0.3017 4.4398 0.3598
Danu-3 10 958 0.9326 33 3.1827 50 2.7771 0.3782 5.5651 0.4059
Fras-1 10 957 0.9772 70 1.5279 50 1.6994 0.3879 5.7077 0.3878
Fras-2 10 958 0.9734 63 2.9821 50 3.1849 0.2511 3.6952 0.3529
Fras-3 10 958 0.9582 47 2.3767 50 2.3411 0.2272 3.343 0.1886
Fras-4 8401 0.9294 30 2.2163 50 1.9096 0.2769 3.7833 0.3100
Missi-1 10 958 0.9961 232 1.8789 50 3.0163 0.4133 6.0813 0.3909
Missi-2 10 956 0.9921 144 2.6780 50 3.7589 0.3846 5.6601 0.4001
Missi-3 10 958 0.9917 139 1.8277 50 2.6476 0.5098 7.5018 0.4847
Missi-4 10 958 0.9563 45 2.7527 50 2.6345 0.5358 7.8847 0.0000
Misso-1 10 958 0.9711 60 3.6930 50 3.9396 0.4484 6.5985 0.4238
Misso-2 9131 0.9805 75 3.6145 50 4.1707 0.4639 6.4915 0.4124
Misso-3 10 958 0.9165 29 5.1261 50 4.1325 0.4179 6.1498 0.0000
Misso-4 10 958 0.9522 42 3.2612 50 3.0869 0.2450 3.605 0.0000
Ohio-1 10 958 0.9723 62 1.7652 50 1.8735 0.2910 4.2822 0.2983
Ohio-2 10 958 0.9547 44 2.1173 50 2.0477 0.2569 3.781 0.2581
Ohio-3 10 958 0.9291 32 1.7894 50 1.6164 0.3289 4.8401 0.2263
Ohio-4 10 958 0.8985 25 1.9601 50 1.5937 0.3659 5.3839 0.3324
Rhine-1 10 957 0.9897 120 1.2813 50 1.6822 0.3787 5.5729 0.4254
Rhine-2 10 958 0.9715 61 2.0457 50 2.1880 0.3513 5.1699 0.0000
Rhine-3 10 958 0.9048 26 2.1554 50 1.7478 0.3792 5.5799 0.4176
Rhine-4 10 958 0.8739 21 2.2409 50 1.7306 0.2489 3.6627 0.3447

Note: In the Lo’s R/S test, lag-1 is determined by the data-driven formula, lag-2 is the fixed lag,
and , stat-1 and stat-2 are their corresponding test statistics.
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Figure 1 The GPH estimate versus the S-MLE estimate of d 

(Note: the straight line has a slope of 0.5) 
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Figure 2 d versus watershed scale for streamflow processes 

 

Fig. 1. The GPH estimate versus the S-MLE estimate of d (note: the straight line has a slope
of 0.5).
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Figure 2 d versus watershed scale for streamflow processes 

 
Fig. 2. Estimated d versus watershed scale for streamflow processes.
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